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Abstract
We solve the normal ordering problem for the ladder operators B̂+ and B̂− for
strings in the form (B̂r

+B̂
s
−)n for supersymmetric and shape-invariant potential

systems, with r, s and n positive integers. We provide exact and explicit
expressions for their normal form N {(B̂r

+B̂
s
−)n}, where in N {· · ·} all B̂− are

at the right side, and find that the solution involves an expansion coefficients
sequence which, for r, s > 1, corresponds to the generalization, for any shape-
invariant potential system, of the classical Stirling and Bell numbers. We show
that these numbers are obtained for families of polynomials generated with
parameters related to the forms of the supersymmetric partner potentials. We
apply the general formalism to Pöschl–Teller, Morse, Scarf and self-similar
potential systems.

PACS numbers: 02.10.De, 03.65.Fd, 02.30.Lt

1. Introduction

The operator ordering problems frequently occur both in pure mathematics and theoretical
physics studies. In many cases the mathematics is fairly complicated and it is often
necessary to raise a function of non-commuting operators to certain powers or to rearrange
operators in a certain order to facilitate calculations of trace and matrix elements. In
physics, for the applications in quantum optics [1], studies in this field are restricted to
the bosonic operators â and â† of the harmonic oscillator potential system, satisfying the
commutation relation [â, â†] = cÎ , where Î is the identity operator and c a so-called
c number. However, the harmonic oscillator is only the simplest example of a class of
important potentials, called supersymmetric shape-invariant potentials [2], which are used
with success in the models for quantum confined systems. Among these potentials we
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can cite also the Morse, Scarf, Pöschl–Teller, Hülthen and Coulomb potentials. The
supersymmetric partner Hamiltonians Ĥ± = p̂2

x + V (±)(x; a1) for these systems can be
written as Ĥ− = Â†(a1)Â(a1) and Ĥ+ = Â(a1)Â

†(a1) where a1 is a set of parameters,
Â(a1) ≡ W(x; a1) + ip̂x and the superpotential W(x; a1) is a real function related to the
partner potentials via V (±)(x; a1) = W 2(x; a1) ± W ′(x; a1) (here dash denotes the derivative
with respect to x and, for simplicity, in this study we take h̄ = 2m = 1). On the other hand,
the shape invariance integrability condition [3], which characterize this set of potentials, is
given by Â(a1)Â

†(a1) = Â†(a2)Â(a2) + R(a1) where a2 is a function of a1 (say a2 = f (a1))
and the remainder R(a1) is independent of the dynamical variables.

Recently, the use of the operator techniques based on algebraic models [4–7] brought
renewed interest to the study of shape-invariant systems. In [4] one of us introduced the
parameter translation operator T ≡ T (a1) which acts in the an-potential parameters space
Ea ≡ {|an〉; n = 1, 2, 3, . . .} through the similarity transformation T̂ O(a1)T̂

† = O(a2). With
the ladder operators [4]

B̂+ = Â†(a1)T̂ and B̂− = B̂†
+ = T̂ †Â(a1), (1)

the partner Hamiltonians Ĥ± can be written as Ĥ− = Ĥ− and Ĥ+ = T̂ Ĥ+T̂
†, where the new

partner Hamiltonians are defined as Ĥ± = B̂∓B̂±, while the shape invariance condition is
reduced to the ladder operator commutation relation

[B̂−, B̂+] = Ĥ+ − Ĥ− = T̂ †R(a1)T̂ ≡ R(a0), (2)

suggesting that, indeed, the operators B̂+ and B̂− are the appropriate creation and annihilation
operators for the spectra of the shape-invariant potential systems provided that their non-
commutativity with R(an) is taken into account. From the remainder ladder relations

B̂±R(an) = R(an±1)B̂± (3)

which readily follows from the definition of B̂±, and the ground state annihilation condition
Â|0〉 = 0 = B̂−|0〉, it is possible to obtain the eigenvalue equations:

Ĥ−|n〉 = en|n〉 and Ĥ+|n〉 = {en + R(a0)}|n〉 (4)

where the normalized nth excited eigenstate |n〉 = K̂n
+|0〉 can be obtained from the ground

state by the successive action of the raising operator K̂+ ≡ 1√
Ĥ−

B̂+ and the related eigenvalues

are given by

e0 = 0 and en =
n∑

k=1

R(ak) for n � 1. (5)

With the results above, it is possible to show that

B̂+|n〉 = √
en+1|n + 1〉 and B̂−|n〉 =

√
en−1 + R(a0)|n − 1〉, (6)

making clear the ladder nature of the operators B̂± when applied on the eigenstates
{|n〉; n = 0, 1, 2, . . .} of Ĥ±. On the other hand, note that from the remainder ladder relations
(3) one gets the commutation relations

[B̂+, [B̂+, [B̂+, . . . , [B̂+, [B̂+, [B̂+, R0]]] . . .]]]︸ ︷︷ ︸
sequence of n commutation operations

=
{

n∑
k=0

(−1)k
(n

k

)
Rn−k

}
B̂n

+ , (7)

where we used the binomial coefficient definition:
(

n

k

) = n!/{k!(n − k)!} and assumed
the simplifying notation Rn ≡ R(an). There are an infinite number of these commutation
relations which, with their adjoint commutation relations and the commutator (2), form an
infinite-dimensional Lie algebra, realized here in a unitary representation.
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Taking into account the algebraic formulation based on the ladder operators B̂±, we
can consider these operators as the generalization of the boson operators for shape-invariant
potential systems. In this paper, we begin the study of the normal ordering of these operators
and obtain closed formulas generalizing the conventional combinatorial Bell and Stirling
numbers related to the expansion coefficients of the normal ordering expressions.

The outline of the paper is the following. In section 2 we proceed with the normal ordering
of the ladder operator string (B̂+B̂−)n and obtain the shape-invariant system generalization of
the conventional Stirling and Bell numbers. In sections 3 and 4 we do the same considering,
respectively, the ladder operator strings (B̂r

+B̂−)n, (B̂+B̂
s
−)n and (B̂r

+B̂
s
−)n where r, s and n are

positive integers. In section 5, we work out some examples and in section 6, we end the paper
with our conclusions and brief remarks.

2. The ordering of the ladder operator string (B̂+B̂−)n

2.1. The ladder operator normal ordering

Any function f (B̂−, B̂+) of the ladder operators B̂− and B̂+ can be defined by its power series
expansion

f (B̂−, B̂+) =
∑

k,l,m,n,...

Cklmn...B̂
k
−B̂l

+B̂
m
+ B̂n

− . . . . (8)

Following the idea of the normal ordering procedure of the boson operators in the harmonic
oscillator potential case [1, 8–10], by normal ordering process of f (B̂−, B̂+) we mean
N [f (B̂−, B̂+)] which is obtained by moving all the lowering operators B̂− to the right in
each term of expansion (8) using the commutation relation (2). In this process, the equality
f (B̂−, B̂+) = N [f (B̂−, B̂+)] must be satisfied. In other words, we say that the function
f (B̂−, B̂+) is in normal order form if we can write

N [f (B̂−, B̂+)] = f (B̂−, B̂+) =
∑
m,n

C(N )
mn B̂n

+ B̂m
− (9)

after to use the shape invariance commutation relation (2).
Because of the infinite dimensional nature of the Lie algebra of the shape-invariant

systems, the process of normal ordering of strings composed by the ladder operators B̂+ and
B̂− is harder than the harmonic oscillator potential case.

The main purpose of the following sections is to proceed with the normal ordering for the
ladder operator string with the form (B̂r

+B̂
s
−)n for r � s and n � 1. However, before that, we

study some particular cases which are also interesting.

2.2. The shape-invariant generalization of the Stirling and Bell numbers

For this moment, we restrict ourselves to the case r = s = 1 in such way that we are searching
for the normally ordered form of the nth power of the partner Hamiltonian Ĥ− = B̂+B̂−.
Note that this operator is the shape-invariant analog of the number operator N̂ = â†â for the
harmonic oscillator system. To make the procedure easier we first obtain an auxiliary relation.
Taking into account the commutation relation (2), the remainder ladder relations (3) and the
eigenvalue expression (5), one can show that

(B̂+B̂−)B̂+B̂− = B̂2
+B̂2

− + e1B̂+B̂−
(B̂+B̂−)B̂2

+B̂2
− = B̂3

+B̂3
− + e2B̂

2
+B̂2

−
(10)

3
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and, in general, we can prove by induction that

(B̂+B̂−)B̂k
+B̂k

− = B̂k+1
+ B̂k+1

− + ekB̂
k
+B̂k

−. (11)

This relation enables us to compute the string (B̂+B̂−)n = (B̂+B̂−)(B̂+B̂−)n−1 since starting
with k = 1, equation (11) yields

(B̂+B̂−)2 = B̂2
+B̂2

− + e1B̂+B̂− (12)

(B̂+B̂−)3 = B̂3
+B̂3

− + (e2 + e1)B̂
2
+B̂2

− + e2
1B̂+B̂−

(B̂+B̂−)4 = B̂4
+B̂4

− + (e3 + e2 + e1)B̂
3
+B̂3

− +
[
e2(e2 + e1) + e2

1

]
B̂2

+B̂2
− + e3

1B̂+B̂−
(B̂+B̂−)5 = B̂5

+B̂5
− + (e4 + e3 + e2 + e1)B̂

4
+B̂4

− +
[
e3(e3 + e2 + e1) + e2(e2 + e1) + e2

1

]
B̂3

+B̂3
−

+
[
e2

2(e2 + e1) + e2
1e2 + e3

1

]
B̂2

+B̂2
− + e4

1B̂+B̂−. (13)

Therefore, if we continue this procedure to obtain higher n power of (B̂+B̂−)n, we can show,
by induction, that it is possible to write

(B̂+B̂−)n =
n∑

k=1

S(k, n − k)B̂k
+B̂k

−, (14)

where the expansion coefficients S(k, n − k), defined as

S(k, 0) = 1, ∀ k ∈ 	 Z and S(k, j) =
k∑

s=1

esS(s, j − 1) for j, k 	= 0,

(15)

can be identified as the generalization, for any shape-invariant system, of the classical Stirling
numbers S(n, k) [11]. The classical Stirling numbers S(n, k), related to the harmonic oscillator
potential case, have an original combinatorial interpretation in terms of partitions of the set
[12, 13]. They count the number of ways of putting n different objects into k identical
containers, none left empty.

At this point it is also possible to define the generalized Bell numbers B(n) for shape-
invariant systems, as well as the generalized Bell function B(n, x), through

B(n) =
n∑

k=1

S(k, n − k) and B(n, x) =
n∑

k=1

S(k, n − k)xk. (16)

The function B(n, x) is the shape-invariant system generalization of the conventional Bell
polynomials B(n, x) [14]. Also the classical Bell numbers B(n) [11] have a combinatorial
interpretation since they count the numbers of ways of putting n different objects into n identical
containers, some may be left empty [12, 13]. Because of their increasing relevance as basic
tools, the classical Stirling and Bell numbers are now textbook material in mathematical
physics [15].

From definition (15), we can state the recurrence relation for the generalized Stirling
numbers, which can also be obtained through

S(k, j + 1) =
k∑

s=1

esS(s, j) = ekS(k, j) +
k−1∑
s=1

esS(s, j),

which yields

S(k, j + 1) = S(k − 1, j + 1) + ekS(k, j). (17)

This recurrence relation, which corresponds to the shape-invariant system generalization of
the standard recurrence relation for the classical Stirling numbers S(n, k) [12, 13], can also be
obtained in a longer way using relation (11) and expansion (14).

4
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2.3. The shape-invariant generalization of the Dobiński-type relation

The eigenstates {|n〉; n = 0, 1, 2, . . .} of the partner Hamiltonians Ĥ± and the coherent states
|z; aj 〉 are the most important sets of states within the Hilbert space of a shape-invariant
system. The eigenstates satisfy the eigenvalue equation (4) while the coherent states, in their
simplest unnormalized formulation [16, 17], satisfy the eigenvalue equations

B̂−|z; aj 〉 = z|z; aj 〉 and 〈z; aj |B̂+ = 〈z; aj |z∗. (18)

These states satisfy the analog of the well-known Glauber expansion [16]

|z; aj 〉 =
∞∑

r=0

zr

hr(aj )
|r〉, with hr(aj ) =

r−1∏
k=0

√
E {k}

r for r � 1 (19)

and h0(aj ) = 1, where

E {k}
r ≡ er − ek−1 = Rr + Rr−1 + · · · + Rk+1 + Rk =

r∑
s=k

Rs with k � r. (20)

Note that from expression (19), we get

N(ρ, aj ) ≡ 〈z; aj |z; aj 〉 =
∞∑

r=0

{
ρr

h2
r (aj )

}
, (21)

where ρ = |z|2, and the domain (0 � ρ � R) of the allowed values for ρ is determined by the
radius of convergence R = lim supn→+∞

n
√

h2
n(aj ) in the series above defining N(ρ, aj ) [16].

Taking into account the eigenvalue equations (18), the evaluation of the expectation values
of both sides of equation (14) with respect to the coherent state |z; aj 〉 yields

〈z; aj |(B̂+B̂−)n|z; aj 〉 =
n∑

k=1

S(k, n − k)〈z; aj |B̂k
+B̂k

−|z; aj 〉

= N(ρ, aj )

n∑
k=1

S(k, n − k)ρk. (22)

Recalling Ĥ− = B̂+B̂− and considering the eigenvalue equations (4) in the Glauber expansion
expression (19) we find that

〈z; aj |(B̂+B̂−)n|z; aj 〉 =
∞∑

r=0

{
ρr

h2
r (aj )

}
en
r . (23)

Therefore from (16), (19), (22) and (23), we obtain the shape-invariant system generalization
of the celebrated Dobiński formula [11, 18, 19] for the Bell function

B(n, ρ) = 1

N(ρ, aj )

∞∑
r=0

{
ρr

h2
r (aj )

}
en
r (24)

and, taking ρ = 1, the same for the Bell numbers B(n) ≡ B(n, 1). These expressions assume
definitive forms for each shape-invariant system, when the relation giving the remainder
Rn ≡ R(an) is specified. The most striking property of the Dobińsky formula is the
representation of the number B(n) and the function B(n, ρ) as nontrivial infinite sums.

5
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2.4. Procedure to obtain the generating function of the Bell function

A very elegant and efficient way of storing and tackling information about sequences is attained
through their generating functions [11]. Inspired by the exponential function procedure used in
the conventional Bell polynomials case [14], we present a possible way to obtain a generating
function G(λ, x) of the Bell function B(n, x) by introducing the expansion

G(λ, x) =
∞∑

n=0

B(n, x)

{
λn

h2
n(aj )

}
(25)

in such way that when we insert (24) into (25) and change the summation order we obtain

G(λ, x) = 1

N(x, aj )

∞∑
n=0

[ ∞∑
r=0

{
xr

h2
r (aj )

}
en
r

] {
λn

h2
n(aj )

}

= 1

N(x, aj )

∞∑
r=0

{
xr

h2
r (aj )

}[ ∞∑
n=0

{
(λer)

n

h2
n(aj )

}]

that, from (21), reads

G(λ, x) = 1

N(x, aj )

∞∑
r=0

{
xr

h2
r (aj )

}
N(λer, aj ). (26)

As in the case of the Dobiński relation, the definitive form of G(λ, x) for each shape-invariant
system can be worked out after some calculations when the respective relation giving the
remainder Rn ≡ R(an) is considered. With the expression of G(λ, x), it is possible to obtain
the shape-invariant system generalization of Sheffer identity [20] and the recurrence relation
for the generalized Bell functions B(n, x).

We note that in the harmonic oscillator potential case we have en = n and all the results
obtained until now are reduced to the classical ones obtained in the literature for the study of
the boson normal ordering problem [13, 14, 21–25]. We cite, as an important example, [26]
where the solution of the normal ordering of the boson ladder operators is obtained through of
a combinatorial method resulting in the generalization of the Stirling and Bell numbers, Bell
polynomials and Dobiński relations.

3. The ordering of the ladder operator strings (B̂r
+B̂−)n and (B̂+B̂

s−)n

3.1. Auxiliary relations for B̂−B̂r
+ and B̂s

−B̂+

As a first step in the evaluation of the ladder operator strings (B̂r
+B̂−)n with n, r > 1, we obtain

an auxiliary relation for B̂−B̂r
+ using (2) and (3):

B̂−B̂r
+ = (B̂−B̂+)B̂

r−1
+

= (B̂+B̂− + R0)B̂
r−1
+

= B̂+(B̂−B̂+)B̂
r−2
+ + R0B̂

r−1
+

= B̂+(B̂+B̂− + R0)B̂
r−2
+ + R0B̂

r−1
+

= B̂2
+(B̂−B̂+)B̂

r−3
+ + (R1 + R0)B̂

r−1
+

= B̂2
+(B̂+B̂− + R0)B̂

r−3
+ + (R1 + R0)B̂

r−1
+

...

after r-steps

6
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...

= B̂r−1
+ (B̂+B̂− + R0)B̂

0
+ + (Rr−2 + Rr−3 + . . . + R1 + R0)B̂

r−1
+

= B̂r
+B̂− + (Rr−1 + Rr−2 + Rr−3 + . . . + R1 + R0)B̂

r−1
+ ,

which gives

B̂−B̂r
+ = B̂r

+B̂− + E {0}
r−1B̂

r−1
+ (27)

where the factors E {k}
n are defined in (20). Following the same sequence of steps above, it is

possible to obtain

B̂s
−B̂+ = B̂+B̂

s
− + B̂s−1

− E {0}
s−1 (28)

for s > 1. This relation can be used in the evaluation of the string (B̂+B̂
s
−)n.

3.2. The shape-invariant generalized Stirling numbers S(n)
r,1 (k, n − k) and Bell numbers

Br,1(n)

Note that by the remainder ladder relations (3) and definition (20), we have the relations

B̂s
±E {k}

n = Rn±s + Rn±s−1 + · · · + Rk±s+1 + Rk±s = E {k±s}
n±s B̂s

±. (29)

Therefore, using relations (27) and (29) we can evaluate the strings (B̂r
+B̂−)n =

B̂r
+(B̂−B̂r

+)
n−1B̂− and show that

(B̂r
+B̂−)2 = B̂2r

+ B̂2
− + E {r}

2r−1B̂
2r−1
+ B̂− (30)

(B̂r
+B̂−)3 = B̂3r

+ B̂3
− +

(
E {r}

3r−1 + E {2r−1}
3r−2

)
B̂3r−1

+ B̂2
− + E {r}

3r−2E
{2r−1}
3r−2 B̂3r−2

+ B̂−

(B̂r
+B̂−)4 = B̂4r

+ B̂4
− +

(
E {r}

4r−1 + E {2r−1}
4r−2 + E {3r−2}

4r−3

)
B̂4r−1

+ B̂3
− +

[
E {r}

4r−2

(
E {2r−1}

4r−2 + E {3r−2}
4r−3

)
+ E {2r−1}

4r−3 E {3r−2}
4r−3

]
B̂4r−2

+ B̂2
− + E {r}

4r−3E
{2r−1}
4r−3 E {3r−2}

4r−3 B̂4r−3
+ B̂− (31)

(B̂r
+B̂−)5 = B̂5r

+ B̂5
− +

(
E {r}

5r−1 + E {2r−1}
5r−2 + E {3r−2}

5r−3 + E {4r−3}
5r−4

)
B̂5r−1

+ B̂4
−

+
[
E {r}

5r−2

(
E {2r−1}

5r−2 + E {3r−2}
5r−3 + E {4r−3}

5r−4

)
+ E {2r−1}

5r−3

(
E {3r−2}

5r−3 + E {4r−3}
5r−4

)
+ E {3r−2}

5r−4 E {4r−3}
5r−4

]
B̂5r−2

+ B̂3
− +

{
E {r}

5r−3

[
E {2r−1}

5r−3

(
E {3r−2}

5r−3 + E {4r−3}
5r−4

)
+ E {3r−2}

5r−4 E {4r−3}
5r−4

]
+ E {2r−1}

5r−4 E {3r−2}
5r−4 E {4r−3}

5r−4

}
B̂5r−3

+ B̂2
− + E {r}

5r−4E
{2r−1}
5r−4 E {3r−2}

5r−4 E {4r−3}
5r−4 B̂5r−4

+ B̂−. (32)

Note that if we define the factors

S(n)
r,1 (n, j) = 1, ∀ j and

S(n)
r,1 (k, j) =

n−1∑
p=j

E {(p+k−n+1)(r−1)+1}
nr−p S(n)

r,1 (k + 1, p), ∀ k < n, (33)

and we continue the procedure used above to obtain higher power n of (B̂r
+B̂−)n, we can show

by induction that it is possible to write

(B̂r
+B̂−)n =

n∑
k=1

S(n)
r,1 (k, n − k)B̂nr−n+k

+ B̂k
− (34)

and, from this normally ordered expression, we can define the Stirling numbers S(n)
r,1 (k, n − k)

that, in this case, are given by relation (33). Consequently, we can define also the Bell functions

7
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Br,1(n, x) and the Bell numbers Br,1(n) as

Br,1(n, x) ≡
n∑

k=1

S(n)
r,1 (k, n − k)xk and Br,1(n) ≡ Br,1(n, 1) =

n∑
k=1

S(n)
r,1 (k, n − k).

(35)

The numbers S(n)
r,1 (k, n − k) and Br,1(n) are, respectively, the shape-invariant system

generalization of the conventional Stirling and Bell numbers Sr,1(n, k) and Br,1(n) found
in the literature [13, 14].

From definitions (15) and (33), it is easy to verify that in the case of r = 1 we have
the expected relation S(n)

1,1(k, n − k) = S(k, n − k) among the generalized Stirling numbers
obtained in this and in the previous sections. On the other hand, for the case of r = 2, we
obtain the Stirling numbers S(n)

2,1(k, n − k), which is the shape-invariant system generalization
of the classical so-called unsigned Lah numbers L(n, k) [19].

To obtain the normally ordered form of the string (B̂+B̂
s
−)n with s > 1, we can use the

auxiliary relation (28) and the same induction approach of the previous case to show, after the
same laborious calculation, that

(B̂+B̂
s
−)n =

n∑
k=1

B̂k
+B̂ns−n+k

− S(n)
1,s (k, n − k), where (36)

S(n)
1,s (n, j) = 1, ∀ j and

S(n)
1,s (k, j) =

n−1∑
p=j

E {(p+k−n+1)(s−1)+1}
ns−p S(n)

1,s (k + 1, p), ∀ k < n. (37)

4. The ordering of the ladder operator string (B̂r
+B̂s−)n

4.1. Auxiliary relation for B̂s
−B̂r

+

Using result (27), we are able to obtain an expression for the term B̂s
−B̂r

+ = B̂−(B̂s−1
− B̂r

+) and
use it to get a final expression for the normal ordering of the string (B̂r

+B̂
s
−)n, where r > s and

s, n > 1. We get

B̂2
−B̂r

+ = B̂r
+B̂

2
− +

(
E {0}

r−1 + E {−1}
r−2

)
B̂r−1

+ B̂− + E {−1}
r−2 E {0}

r−2B̂
r−2
+ (38)

B̂3
−B̂r

+ = B̂r
+B̂

3
− +

(
E {0}

r−1 + E {−1}
r−2 + E {−2}

r−3

)
B̂r−1

+ B̂2
− +

[
E {0}

r−2

(
E {−1}

r−2 + E {−2}
r−3

)
+ E {−1}

r−3 E {−2}
r−3

]
B̂r−2

+ B̂− + E {−2}
r−3 E {−1}

r−3 E {0}
r−3B̂

r−3
+ (39)

B̂4
−B̂r

+ = B̂r
+B̂

4
− +

(
E {0}

r−1 + E {−1}
r−2 + E {−2}

r−3 + E {−3}
r−4

)
B̂r−1

+ B̂3
−

+
[
E {0}

r−2

(
E {−1}

r−2 + E {−2}
r−3 + E {−3}

r−4

)
+ E {−1}

r−3

(
E {−2}

r−3 + E {−3}
r−4

)
+ E {−2}

r−4 E {−3}
r−4

]
B̂r−2

+ B̂2
−

+
{
E {0}

r−3

[
E {−1}

r−3

(
E {−2}

r−3 + E {−3}
r−4

)
+ E {−2}

r−4 E {−3}
r−4

]
+ E {−1}

r−4 E {−2}
r−4 E {−3}

r−4

}
B̂r−3

+ B̂−

+ E {0}
r−4E

{−1}
r−4 E {−2}

r−4 E {−3}
r−4 B̂r−4

+ (40)

B̂5
−B̂r

+ = B̂r
+B̂

5
− +

(
E {0}

r−1 + E {−1}
r−2 + E {−2}

r−3 + E {−3}
r−4 + E {−4}

r−5

)
B̂r−1

+ B̂4
−

+
[
E {0}

r−2

(
E {−1}

r−2 + E {−2}
r−3 + E {−3}

r−4 + E {−4}
r−5

)
+ E {−1}

r−3

(
E {−2}

r−3 + E {−3}
r−4 + E {−4}

r−5

)
+ E {−2}

r−4

(
E {−3}

r−4 + E {−4}
r−5

)
+ Er−5,−3Er−5,−4

]
B̂r−2

+ B̂3
−

8
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+
{
E {0}

r−3

[
E {−1}

r−3

(
E {−2}

r−3 + E {−3}
r−4 + E {−4}

r−5

)
+ E {−2}

r−4

(
E {−3}

r−4 + E {−4}
r−5

)
+ E {−3}

r−5 E {−4}
r−5

]
+ Er−4,−1

[
E {−2}

r−4

(
E {−3}

r−4 + E {−4}
r−5

)
+ E {−3}

r−5 E {−4}
r−5

]
+ E {−2}

r−5 E {−3}
r−5 E {−4}

r−5

}
B̂r−3

+ B̂2
−

+
{
E {0}

r−4E
{−1}
r−4

[
E {−2}

r−4

(
E {−3}

r−4 + E {−4}
r−5

)
+ E {−3}

r−5 E {−4}
r−5

]
+ E {−1}

r−5 E {−2}
r−5 E {−3}

r−5 E {−4}
r−5

}
B̂r−4

+ B̂− + E {0}
r−5E

{−1}
r−5 E {−2}

r−5 E {−3}
r−5 E {−4}

r−5 B̂r−5
+ . (41)

At this point, if we define the factors

C(s)
r (0, j) = 1, ∀ j and C(s)

r (k, j) =
s∑

p=j

E {k−p}
r−p C(s)

r (k − 1, p), ∀ k > 0, (42)

we can write these results in general as

B̂s
−B̂r

+ =
s∑

k=0

C{s}
r (k, k)B̂r−k

+ B̂s−k
− , with r > s. (43)

When r < s, we can use result (28), relation (29), and, following the same sequence of
steps as above, we can show that the auxiliary relation, in this case, will assume the form

B̂s
−B̂r

+ =
r∑

k=0

B̂r−k
+ B̂s−k

− C̃{r}
s (k, k), (44)

where

C̃(r)
s (0, j) = 1, ∀ j and C̃(r)

s (k, j) =
r∑

p=j

E {k−p}
s−p C̃(r)

s (k − 1, p), ∀ k > 0.

(45)

The auxiliary relation in (44) can be used in the evaluation of the string (B̂r
+B̂

s
−)n when

r < s and r, n > 1.

4.2. The shape-invariant generalized Stirling numbers S(n)
r,s (k, n − k) and Bell numbers

Br,s(n)

At this point we can use relations (29) and (42) to show that

B̂n
±C{s}

r (k, j) = C{s∓n}
r (k, j ∓ n)B̂n

± (46)

and taking into account this relation and (43) we can evaluate the string

(B̂r
+B̂

s
−)2 = B̂r

+(B̂
s
−B̂r

+)B̂
s
−

= B̂r
+

(
s∑

k=0

C{s}
r (k, k)B̂r−k

+ B̂s−k
−

)
B̂s

−

=
s∑

k=0

C{s−r}
r (k, k − r)B̂2r−k

+ B̂2s−k
− , (47)

which can be written as

(B̂r
+B̂

s
−)2 =

s∑
k=0

S(2)
r,s (k, 2 − k)B̂2r−k

+ B̂2s−k
− where S(2)

r,s (k, 2 − k) = C{s−r}
r (k, k − r).

(48)

9
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With the result obtained above and relations (43) and (46), we can evaluate

(B̂r
+B̂

s
−)3 = B̂r

+B̂
s
−(B̂r

+B̂
s
−)2

=
s∑

k1=0

s∑
k2=0

C{2(s−r)}
r (k1, k1 − 2r + s)C{s−r}

2r−k1
(k2, k2 − r)B̂3r−k1−k2

+ B̂
3s−k1−k2− . (49)

Collecting the terms with the same (k1 + k2)-values in the powers of B̂± and putting them
together is possible to rewrite (49) as

(B̂r
+B̂

s
−)3 =

2s∑
k=0

S(3)
r,s (k, 3 − k)B̂3r−k

+ B̂3s−k
− , (50)

where

S(3)
r,s (k, 3 − k) =

k∑
k1=0

C{2(s−r)}
r (k1, k1 − 2r + s)C{s−r}

2r−k1
(k − k1, k − k1 − r). (51)

As a next step, we can use equations (49) and (46) and the same procedure of the previous
n = 3 power to evaluate the n = 4 power case and show that

(B̂r
+B̂

s
−)4 = B̂r

+B̂
s
−(B̂r

+B̂
s
−)3

=
s∑

k1=0

s∑
k2=0

s∑
k3=0

C{3(s−r)}
r (k1, k1 − 3r + 2s)C{2(s−r)}

2r−k1
(k2, k2 − 2r + s)

× C{s−r}
3r−k1−k2

(k3, k3 − r)B̂4r−k1−k2−k3
+ B̂

4s−k1−k2−k3− . (52)

After we collect the terms with the same (k1 + k2 + k3)-values in the powers of B̂± and to put
them together, it is possible to rewrite (52) as

(B̂r
+B̂

s
−)4 =

3s∑
k=0

S(4)
r,s (k, 4 − k)B̂4r−k

+ B̂4s−k
− , (53)

where

S(4)
r,s (k, 4 − k) =

k∑
k1=0

k−k1∑
k2=0

C{3(s−r)}
r (k1, k1 − 3r + 2s)C{2(s−r)}

2r−k1
(k2, k2 − 2r + s)

× C{s−r}
3r−k1−k2

(k − k1 − k2, k − k1 − k2 − r). (54)

As a last step, taking into account equations (52), (46) and following the same procedure
as the previous power cases we obtain, after some calculations, the expression

(B̂r
+B̂

s
−)5 =

4s∑
k=0

S(5)
r,s (k, 5 − k)B̂5r−k

+ B̂5s−k
− (55)

where

S(5)
r,s (k, 5 − k) =

k∑
k1=0

k−k1∑
k2=0

k−k1−k2∑
k3=0

C{4(s−r)}
r (k1, k1 − 4r + 3s)C{3(s−r)}

2r−k1
(k2, k2 − 3r + 2s)

× C{2(s−r)}
3r−k1−k2

(k3, k3 − 2r + s)

× C{s−r}
4r−k1−k2−k3

(k − k1 − k2 − k3, k − k1 − k2 − k3 − r). (56)

10
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Continuing this procedure for higher power n of the string (B̂r
+B̂

s
−)n we can show by induction

that

(B̂r
+B̂

s
−)n =

ns−s∑
k=0

S(n)
r,s (k, n − k)B̂nr−k

+ B̂ns−k
− (57)

where

S(n)
r,s (k, n − k) =

k∑
k1=0

k−k1∑
k2=0

k−k1−k2∑
k3=0

· · ·
k−k1−k2−...−kn−3∑

kn−2=0︸ ︷︷ ︸
sequence of (n−2) sum operations

C{(n−1)(s−r)}
r (k1, k1 − (n − 1)r

+ (n − 2)s)C{(n−2)(s−r)}
2r−k1

(k2, k2 − (n − 2)r + (n − 3)s)

× C{(n−3)(s−r)}
3r−k1−k2

(k3, k3 − (n − 3)r + (n − 4)s)

× C{s−r}
(n−1)r−k1−k2−...−kn−2

(k − k1 − k2− · · · − kn−2, k−k1 − k2− · · · −kn−2 − r).

(58)

Considering the expression obtained in (57) for the string (B̂r
+B̂

s
−)n, we can identify the

factors S(n)
r,s (k, n − k), given in (58), as the generalization for any shape-invariant potential

system of the classical Stirling numbers of second order Sr,s(n, k) [14]. Consequently we can
define the corresponding generalized Bell functions Br,s(n, x) and Bell numbers Br,s(n) as

Br,s(n, x) ≡
n∑

k=1

S(n)
r,s (k, n − k)xk and Br,s(n) ≡ Br,s(n, 1) =

n∑
k=1

S(n)
r,s (k, n − k).

(59)

When r < s we can use (29) and (45) to obtain the ladder relation

B̂n
±C̃{r}

s (k, j) = C̃{r∓n}
s (k, j ∓ n)B̂n

±. (60)

Taking into account this relation, (44), (45) and the same induction approach used before, it is
possible to show that

(B̂r
+B̂

s
−)n =

nr−r∑
k=0

B̂nr−k
+ B̂ns−k

− S̃(n)
r,s (k, n − k), where S̃(n)

r,s (k, n − k) = S(n)
s,r (k, n − k).

(61)

From expansion (61) we identify the factors S̃(n)
r,s (k, n − k) as the shape-invariant-

system generalized Stirling numbers of second order when r < s. Thus we can define the
corresponding generalized Bell functions B̃r,s(n, x) and Bell numbers B̃r,s(n) as

B̃r,s(n, x) ≡
n∑

k=1

S̃(n)
r,s (k, n − k)xk and B̃r,s(n) ≡ B̃r,s(n, 1) =

n∑
k=1

S̃(n)
r,s (k, n − k).

(62)

Comparing expressions (59) and (62), the symmetry relation B̃r,s(n) = Bs,r (n) is evident.

5. Applications to some shape-invariant potential systems

In order to illustrate how our general results can be applied in specific cases, we consider in this
section the normal ordering ladder operators problem for three examples of shape-invariant
potential systems: the first two presenting the potential parameters an related by translation
and the third one with these parameters related by scaling.

11
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5.1. The Pöschl–Teller potential system

The Pöschl–Teller potential [27] was originally introduced in a molecular physics context
and is closely related to several other potentials widely used in molecular and solid state
physics, such as, for example, the Scarf potential, used in the modeling of 1D crystal,
and the Rosen–Morse potential, used in molecular models. Besides that, the Pöschl–Teller
potential, in its trigonometric form, presents the interesting property of representing the
infinite square-well as a special limit. The supersymmetric partner potentials V (±)(x; a1) =
−(a1 + δ)2 + a1(a1 ±α) sec2 αx + δ(δ ±α) csc2 αx for a trigonometric Pöschl–Teller potential
system are obtained with the superpotential W(x; a1) = a1 tan αx − δ cot αx, where a1, α and
δ are real constants and

(
0 � αx � π

2

)
. In this case the potential parameters are related by

an = an−1 + α and the remainders involved with the shape invariance condition (2) are given
by the recurrence relation Rn = R1 + 2κ(n − 1), where R1 = κ(γ + 1) with κ = 4α2 and
γ = (a1 + δ)/α. Using these relations in (5) and (20) and setting the energy scale so that κ = 1
(as the usual procedure used in the harmonic oscillator case is) we find the eigenvalue factors
en and E {k}

r with the forms

en = n(γ + n) and E {k}
r = (r − k + 1)γ + r2 − (k − 1)2. (63)

From expressions for Rn, en and E {k}
r and their relations with the shape-invariant system

generalized Stirling and Bell numbers through of equations (15), (16), (33), (35), (42), (58)
and (59), we find these numbers given by polynomials with the form

S(n)
r,s (k, n − k) = c(n,0)

r,s (k) + c(n,1)
r,s (k)γ + c(n,2)

r,s (k)γ 2 + · · · + c(n,n−k)
r,s (k)γ n−k (64)

Br,s(n) =
n−1∑
k=0

[
c(n,0)
r,s (k) + c(n,1)

r,s (k)γ + c(n,2)
r,s (k)γ 2 + · · · + c(n,n−k)

r,s (k)γ n−k
]

(65)

in such way that their numerical values are dependent on the value of the factor γ . Some
examples illustrating this behaviour are given by

S(5)
1,1(5, 0) = 1, S(5)

1,1(4, 1) = 30 + 10γ, S(5)
1,1(3, 2) = 147 + 120γ + 25γ 2,

S(5)
1,1(2, 3) = 85 + 141γ + 79γ 2 + 15γ 3, S(5)

1,1(1, 4) = 1 + 4γ + 6γ 2 + 4γ 3 + γ 4.

Therefore, we conclude that the factor γ defines the families of Stirling and Bell numbers for
the Pöschl–Teller potential. Since γ defines the form of the Pöschl–Teller potential, the form
of the potential is responsible for the definition of the family of S(n)

r,s (k, n − k) and Br,s(n)

numbers. We note that since γ can assume any continuous value within its physically allowed
range, there is an infinite number of possible families of Stirling and Bell numbers for Pöschl–
Teller potential systems. The common x dependence of the potentials with different forms is
responsible for the common set of polynomial coefficients

{
c
(n,j)
r,s (k); j = 0, 1, 2, . . . , n − k

}
defining the elements S(n)

r,s (k, n − k) and Br,s(n) which belong to different families (γ values).
Also this common x potential dependence is related to the common polynomial form of the
numbers S(n)

r,s (k, n − k) with the same n−k value and different n and k values, as we can see
comparing the Stirling numbers

S(5)
1,1(2, 3) = 85 + 141γ + 79γ 2 + 15γ 3 and S(4)

1,1(1, 3) = 1 + 3γ + 79γ 2 + γ 3.

(66)

12
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Table 1. Triangle of the generalized polynomial Stirling numbers S(n)
1,1(k, n−k) for a Pöschl–Teller

potential system, given in the vector notation (67).

We conclude that it is sufficient to specify a given Stirling numbers family to present the
numerical values of the polynomial coefficients associated with this family. Consequently we
use the following simplifying vector notation after this point:

S(n)
r,s (k, n − k) ⇐⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c(n,0)
r,s

c(n,1)
r,s

c(n,2)
r,s

...

c(n,n−k)
r,s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (67)

From the number n−k+1 of elements of the vector, we obtain the order n−k of the polynomial
for S(n)

r,s (k, n − k).
In the tables 1, 2 and 3 we present, in the vector notation (67), the polynomial giving the

Stirling S(n)
r,s (k, n− k) numbers for some values of the powers n, r and s belonging to a generic

γ -family of the Pöschl–Teller potential system.
To conclude this application, we note that the trigonometric Scarf potential [2], the

superpotential of which is given by W(x; a1) = a1 tan αx + δ sec αx, where a1, α and δ are
real constants and

(−π
2 � αx � π

2

)
, has the eigenvalue factors en and E {k}

r and the remainders
Rn involved with the shape invariance condition (2) with the same forms presented for the
Pöschl–Teller potential case. Therefore, the families of Stirling S(n)

r,s (k, n − k) numbers for
this potential have the same polynomial structure presented in the tables 1, 2 and 3.

13
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Table 2. The same as table 1 for the generalized polynomial Stirling numbers S(n)
2,1(k, n − k).

Table 3. The same as table 1 for the generalized polynomial Stirling numbers S(n)
3,2(k, n − k).

5.2. The Morse potential system

The Morse potential [28] was originally introduced as a useful model for the diatomic
molecules and has been widely used in the study of molecular vibrations, laser chemistry
and, in particular, chemical bonds. Anharmonicities and dissociation effects, which may arise
in a more realistic physical situation, are better represented using a Morse potential. The
supersymmetric partner potentials V (±)(x; a1) = a2

1 + e−2αx − (2a1 ∓ α) e−αx for a Morse
potential system are obtained with the superpotential W(x; a1) = a1 − e−αx , where a1 and
α are real constants. In this case the potential parameters are related by an = an−1 − α and
the remainders involved with the shape invariance condition (2) are given by the recurrence

14
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relation Rn = R1 − 2κ(n − 1), where R1 = κ(γ − 1) with κ = α2 and γ = 2a1/α. Using
these relations in (5) and (20) and setting κ = 1, we find the eigenvalue factors en and E {k}

r as

en = n(γ − n) and E {k}
r = (r − k + 1)γ − r2 + (k − 1)2. (68)

Because of the resemblance between these factors and those of the Pöschl–Teller potential
system we find that the families of Stirling S(n)

r,s (k, n − k) numbers for the Morse potential

system have the same polynomial expressions (64) and (65), but with some coefficients c
(n,j)
r,s (k)

taking negative values: when k is even (odd) the coefficients of the terms γ j with j even (odd)
take negative values. Taking into account this sign modification in these terms, the polynomial
giving the Stirling S(n)

r,s (k, n − k), in the vector notation (67), for some values of the powers n,
r and s belonging to a generic γ -family of Morse potential system can be obtained in tables 1,
2 and 3.

Two other examples of shape-invariant potential systems that share the families of the
Stirling S(n)

r,s (k, n − k) and the Bell Br,s(n) numbers with the same polynomial structure of the
Morse potential case are: (i) the hyperbolic Scarf potential [2], the superpotential of which is
given by W(x; a1) = a1 tanh αx + δ sech αx, and (ii) the generalized Pöschl–Teller potential
[2], the superpotential of which is given by W(x; a1) = a1 coth αx − δ cosech αx, where a1, α
and δ are real constants in both of the cases. Consequently, these potentials exhibit eigenvalue
factors en and E {k}

r and the remainders Rn involved in the shape invariance condition (2) in the
same forms as that of the Morse potential case.

5.3. The self-similar potential system

Another class of shape-invariant potentials is given by an infinite chain of reflectionless
potentials V

(±)
k (x) (k = 0, 1, 2, . . .), for which the associated superpotentials Wk(x) satisfy

the self-similar ansatz Wk(x) = qkW(qkx), with 0 < q < 1. These sets of partner potentials
V

(±)
k (x), also called self-similar potentials [29, 30], have their parameters related by a scaling:

an = a1q
n−1. In the simplest case studied [31, 32], the remainder in the shape invariance

condition (2) is given by R(a1) = ca1, where c is a constant. In these conditions, we obtain
the remainder recurrence relation Rn = R1q

n−1, and using this relation in (5) and (20) and
setting the energy scale as 1 making R1 = 1, we find the eigenvalue factors en and E {k}

r with
the forms

en = 1 + q + q2 + · · · + qn−1 = κq(1 − qn) and E {k}
r = κq(q

k−1 − qr),

where κq = (1 − q)−1. (69)

From expressions (69) for Rn, en and E {k}
r and their relations with the shape-invariant

systems generalized Stirling and Bell numbers through of equations (15), (16), (33), (35),
(42), (58) and (59), we find these numbers given by polynomials with the form

S(n)
r,s (k, n − k) = qN(k)

[
c(n,0)
r,s (k) + c(n,1)

r,s (k)q + c(n,2)
r,s (k)q2 + · · · + c(n,m(k))

r,s (k)qm(k)
]

(70)

Br,s(n) =
n−1∑
k=0

qN(k)
[
c(n,0)
r,s (k) + c(n,1)

r,s (k)q + c(n,2)
r,s (k)q2 + · · · + c(n,m(k))

r,s (k)qm(k)
]

(71)

in such a way that their numerical values are dependent on the value of the scaling parameter
q. For the s = 1 case, the power factors N(k) and m(k) have the values given by
N(k) = 1

2 {(r − 1)k(k + 1)} and m(k) = (k − 1)(n − k). Some examples illustrating this
behaviour are

S(5)
1,1(5, 0) = 1, S(5)

1,1(4, 1) = 4 + 3q + 2q2 + q3, S(5)
1,1(3, 2) = 6 + 8q + 7q2 + 3q3 + q4,

S(5)
1,1(2, 3) = 4 + 6q + 4q2 + q3, S(5)

1,1(1, 4) = 1.
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Table 4. Triangle of the generalized polynomial Stirling numbers S(n)
1,1(k, n − k) for a self-similar

potential system, given in the vector notation (72).

Therefore, we conclude that the scaling parameter q defines families of Stirling and Bell
numbers for the self-similar potentials. Since q defines the form of the self-similar potential,
we then conclude that the form of the potential is responsible for the definition of the families
of S(n)

r,s (k, n − k) and Br,s(n) numbers. We note that since q can assume any continuous
value within of its physically allowed range, there is an infinite number of possible families of
Stirling and Bell numbers for self-similar potential systems. The common x dependence of the
potentials with different forms is responsible for the common set of polynomial coefficients
{c(n,j)

r,s (k); j = 0, 1, 2, . . . , m(k)} defining the elements S(n)
r,s (k, n − k) and Br,s(n) belong to

different families (q values). Hence it is sufficient to specify a given Stirling number family
to present the numerical values of the polynomial coefficients associated with these numbers.
Therefore, after this point, we use the following vector notation:

S(n)
r,s (k, n − k) ⇐⇒ qN(k)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

c(n,0)
r,s

c(n,1)
r,s

c(n,2)
r,s

...

c(n,m(k))
r,s

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (72)

From the power factor N(k) and the number m(k) of elements of the vector, we obtain the
order of the polynomial for S(n)

r,s (k, n − k). Tables 4, 5 and 6 present, in the vector notation
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Table 5. The same as table 4 for the generalized polynomial Stirling numbers S(n)
2,1(k, n − k).

(72), the polynomial giving the Stirling S(n)
r,s (k, n − k) numbers for some values of the powers

n, r and s belonging to a generic q-family of a self-similar potential system.

6. Final remarks

We solved the normal ordering problem for shape-invariant-system ladder operators B̂+ and
B̂− for strings of the form (B̂r

+B̂
s
−)n and found that the solution involves expansion coefficient

sequence which, for r, s > 1, corresponds to the generalization, for any shape-invariant
potential system, of the classical Stirling and Bell numbers presented in the literature. We
showed that the families of polynomials generated depend on the parameters related to the
forms of the supersymmetric partner potentials. Since these parameters can assume any
continuous value within the physical allowed range for them, there is an infinite number of
possible families of Stirling and Bell numbers for these potential systems. We verified that the
common x dependence of the potentials with different forms is responsible for the common set
of polynomial coefficients that give the common structure for some families. The application
of the general formalism to some shape-invariant potential systems shows that, in the case of
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Table 6. The same as table 4 for the generalized polynomial Stirling numbers S(n)
3,2(k, n − k).

the potentials presenting their parameters an related by a translation, it is possible to group the
potentials in sets with a common polynomial structure for the Stirling and Bell numbers.

The framework developed in this paper suggests new possibilities in the theoretical study
of the operator normal ordering problems, making the generalization of the definition of
the Stirling and Bell numbers and the extension of the relations possible involving these
new generalized numbers, such as Dobiński-type relations, generating functions, Sheffer-type
identities, possible combinatorial relations, relations to quantum coherent states, etc. Also,
other applications of this formalism to shape-invariant systems could be interesting. Among
them we list as examples the study of forced systems, weakly coupled systems, driven shape-
invariant potential systems, the generalization of the Wick’s theorem for ladder operators, the
study of driven damped systems, the generalization of the master equation, etc.
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